UNIT 6 ECCEPS Statistics

WHY is learning mathematics important?

Chapter 10 Statistical Measures

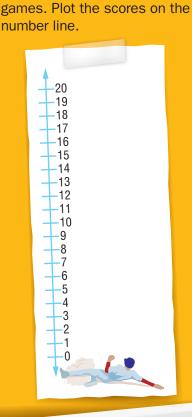
Statistical data has a distribution that can be described by its center or by its spread. In this chapter, you will find and use measures of center and measures of variation to describe sets of data.

Chapter 11 Statistical Displays

Statistical data can be represented in a variety of ways. In this chapter, you will represent and analyze data using line plots, histograms, and box plots.

Chapter 10 Statistical Measures

HOW are the mean, median, and mode helpful in describing data?



Content Standards MCC6.SP.1, MCC6.SP.3, MCC6.SP.5, MCC6.SP.5b, MCC6.SP.5c, MCC6.SP.5d

Mathematical Practices 1, 2, 3, 4, 5, 6

Sports A baseball team scored 9, 6, 8, 16, and 5 points in 5

Cut out the correct Foldable from the FL pages in the back of this book.

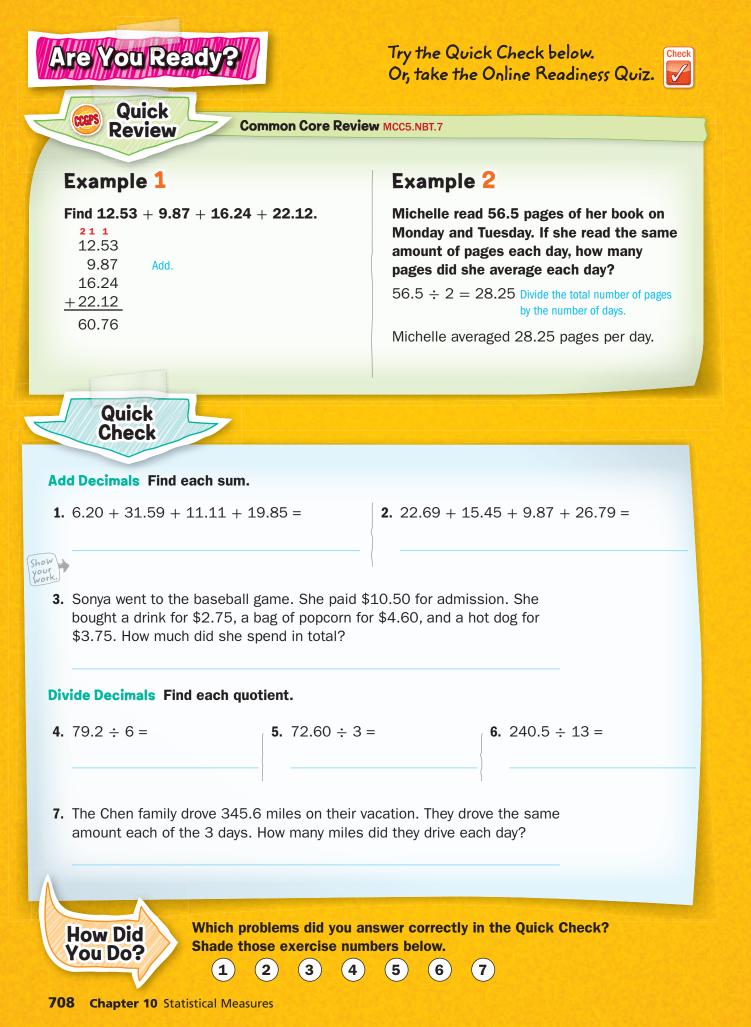
Place your Foldable on the Key Concept page toward the end of this chapter.

Use the Foldable throughout this chapter to help you learn about statistical measures.

Vocabulary

average
first quartile
interquartile range
mean
mean absolute deviation
measure of center
measures of variation

median mode outliers quartiles range statistical question third quartile


Review Vocabulary

Graphic Organizer One way to remember vocabulary terms is to connect them to an opposite term or example. Use this information to complete the graphic organizer.

quotient

	<u> </u>	,
(Definition	
ſ)
	Opposite	
ſ)
	Example	
)

pyright © The McGraw-Hill Companies, I

Inquiry Lab Statistical Questions

INQUITY) HOW are surveys created to collect and analyze data?

Marketing Anderson Advertising is collecting information for a pizza shop. They want to know the number of toppings most customers prefer on their pizza. They will use this information to determine the weekly special.

Investigation 1

Statistics deals with collecting, organizing, and interpreting pieces of information, or *data*. One way to collect data is by asking statistical questions. A **statistical question** is a question that anticipates and accounts for a variety of answers.

The table below gives some examples of statistical questions and questions that are *not* statistical questions.

Statistical Questions	Not Statistical Questions
How many text messages do you send each day?	What is the height in feet of the tallest mountain in Colorado?
What is the minimum driving age for each state in the United States?	How many people attended last night's jazz concert?

Create a survey similar to the one Anderson Advertising would use to survey your classmates. Consider a cheese pizza with no additional toppings as a pizza with one topping.

- Step 1
- Write a statistical question. *How many toppings do you like on your pizza?*

Step 2

Survey your classmates.

Step 3 Record the results in the table to the right. Add additional numbers of toppings to the table as necessary.

Why is *How many toppings do you like on your pizza*? a statistical question?

How Many Toppings Do Your Like on Your Pizza?				
Number of Toppings	Number of Responses			
	-			

Mathematical Practices 1, 3, 4

q

Investigation 2

Sometimes a set of data can be organized into intervals to more easily organize it. This often happens when the set of data has a wide range of values.

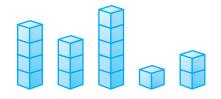
Suppose you want to determine the number of video games each of your math classmates has at home.

- **Step 1** Write the statistical question. How many different video games do you own?
- Step 2
- Survey your classmates.
- **Step 3** Record the results in the table to the right.

How Many Different Video Games Do You Own?			
Number of Video Games	Number of Responses		
less than 5			
5-9			
10-14			
15 or more			

Tools

T

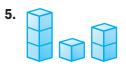

Investigation 3

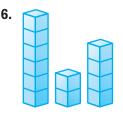
You can use surveys to provide information about patterns in the responses.

Suppose you surveyed five students using the statistical question, *How many Web sites did you visit before school this morning*? The students said 4, 3, 5, 1, and 2 Web sites. If the total amount was equally distributed among all five students, how many Web sites did each student visit?

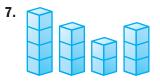
Make a stack of centimeter cubes to represent the number of Web sites visited by each student as shown.

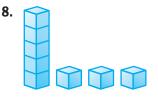
Move the cubes so that each stack has the same number of cubes. Draw your models in the space below.


There are five stacks with _____ cubes in each stack. So, if the responses were equally distributed, each student visited _____ Web sites before school.


Collaborate

Work with a partner. State whether each question is a statistical question. Explain your reasoning.


- 1. Who was the first president of the United States?
- **2.** How much time do the students in my school spend on the Internet each night?
- 3. What is the height of the tallest waterslide at Wild Rides Water Park?
- 4. What are the cabin rental prices for each of the state parks in Kentucky?


Work with a partner. Determine the equal share if the total number of centimeter cubes were equally distributed among the groups. Draw your models in the space provided.

Work with a partner to determine the equal share for each exercise. Use centimeter cubes or counters if needed. The first one is done for you.

	Scenario	Responses	Response Total	Number of Responses	Equal Share	
	Rainfall (inches)	7, 5, 2, 6	7 + 5 + 2 + 6 = 20	4	5	
9.	Books Read	<i>8</i> , 7, 3				
10.	Eggs Hatched	5, 2, 3, 6				
11.	States Visited	1, 4, 2, 5, 3				
12.	Photos Taken	5, 3, 7, 2, 4, 3				
13.	Miles Hiked	11, 12, <i>8</i> , 9				

14. Reason Inductively Compare the answers you provided in the table above. How does the response total and the number of responses relate to the equal share? Write a rule you can use to evenly distribute a data set

without using centimeter cubes.

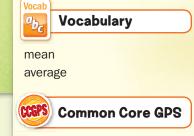
15. One week, the high temperatures in Muncie, Indiana, were 90°F, 88°F, 86°F, 89°F, 91°F, 88°F, and 91°F. What is the equal share of the data? Explain.

17.

16. Model with Mathematics Write a real-world problem that involves equal shares. Find the equal share of your data set.

(Main) HOW are surveys created to collect and analyze data?

Lesson 1 Mean


Essential Question

HOW are the mean, median,

and mode helpful in describing data?

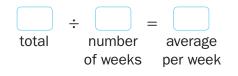
What You'll Learn

Scan the lesson. Predict two things you will learn about mean.

 \bigcirc

Content Standards MCC6.SP.3 Mathematical Practices 1, 2, 3, 4, 6

1. How many total songs were downloaded?


Real-World Link

Music Tina and her friends

as shown in the table below.

downloaded songs for 6 weeks,

2. On average, how many songs did they download each week?

12

6

Number of Songs Downloaded Each Week

10

9

4

1

3. On the number line below, draw an arrow that points to the average. Plot the number of songs downloaded on the number line.

- 4. How far below the average is 1? 4? 6? How far above the average is 9? 10? 12?
- 5. What is the sum of the distances between the average and the points below the average? above the average?
- 6. Explain why the average is the balance point of the data.

Key Concept

Mean

Work Zone

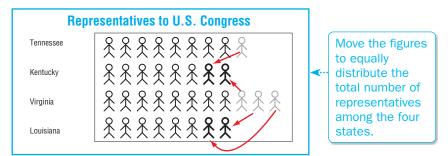
Including Data Even if a data value is 0, it still should be counted in the total number of pieces

of data.

a.

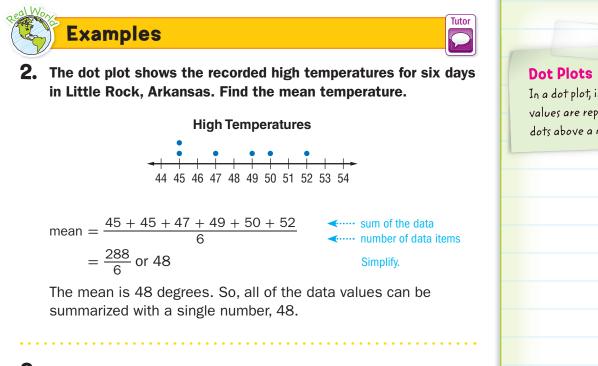
The **mean** of a data set is the sum of the data divided by the number of pieces of data. It is the balance point for the data set.

On the previous page, you found a single number to describe the number of songs downloaded each week. The **average**, or mean, summarizes the data using a single number.

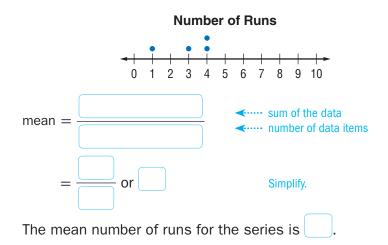

You can find the mean of a set of data shown in different displays such as pictographs and dot plots.

• Find the mean number of representatives for the four states shown in the pictograph.

Kentucky	\mathcal{X}
~	****
0	
Virginia X	****
Louisiana	***

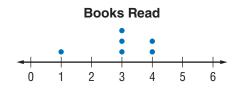


Each state has a mean or average of 8 representatives.


Got It? Do this problem to find out.

a. The table shows the number of CDs a group of friends bought. Find the mean number of CDs the group bought.

I			er of CDs chased		
3		4		6	
	0		2		



3. The dot plot shows the number of runs a baseball team had for each game of a 4 game series. Find the mean number of runs for the series.

Got It? Do this problem to find out.

b. The dot plot shows the number of books Deanna read each week of a month-long reading challenge. Find the mean number of books she read.

In a dot plot, individual data values are represented as dots above a number line. Show Ь.

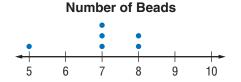
The mean is sometimes described as the balance point. Explain below what this means using the data set {2, 2, 3, 8, 10}.

4. The number of minutes Mary Anne spent talking on her cell phone each month for the past five months were 494, 502, 486, 690, and 478. Suppose the mean for six months was 532 minutes. How many minutes did she talk on her cell phone during the sixth month?

Tutor

Checl

 \checkmark


If the mean is 532, the sum of the six pieces of data must be 532×6 or 3,192. You can create a bar diagram.

	3,192			-			
	494	502	486	690	478	?	
3,192 - (4	194 +	502 +	486 +	690 -	+ 478)	= 3,19	- 92 — 2,650
						= 542	2

Mary Anne talked 542 minutes during the sixth month.

Guided Practice

 The dot plot shows the number of beads sold. Find the mean number of beads. (Examples 1–3)

 The table shows the greatest depths of four of the five oceans in the world. If the average greatest depth is 8.094 kilometers, what is the greatest depth of the Southern

Ocean? (Example 4)

Ocean	Greatest Depth (km)
Pacific	10.92
Atlantic	9.22
Indian	7.46
Arctic	5.63
Southern	

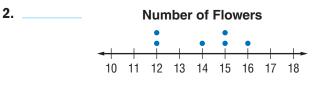
Rate Yourself!

How confident are you about finding the mean of a data set? Check the box that applies.

3. Q Building on the Essential Question Why is it helpful to find the mean of a data set?

n

Independent Practice


Go online for Step-by-Step Solutions

eHelp

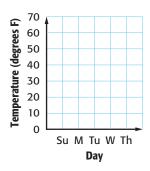
Find the mean for each data set. (Examples 1–3)

	5 61	lapt	er Te	st S	cores
96 92 88 84 80	87	93	86	90	-84-
0 —	1	2	3 Chante	4 • r	5
	92	92 88 84 80	92 92 88 84 80 0 1 2	92 88 84 80 0 1 2 30 86 86 86 86 86 87 86 86 86 86 87 86 86 86 86 86 86 86 86 86 86	90 92 88 84 80 0

Financial Literacy Jamila babysat nine times. She earned \$15, \$20, \$10, \$12, \$20, \$16, \$80, and \$18 for eight babysitting jobs. How much did she earn the ninth time if the mean of the data set is \$24?

(Example 4) _

4. We Model with Mathematics Refer to the graphic novel frame below for Exercises a–b.



- a. What is the mean number of wins for the Cranes? for the Panthers?
- **b.** Based on your answer for part **a**, is the mean a good measure for determining which team has the better record? Explain.

 A stem-and-leaf plot is a display that organizes data from least to greatest. The digits of the least place value form the leaves, and the next place-value digits form the stems. The stem and leaf plot shows Marcia's scores on several tests. Find the mean test score.

Stem	Leaf
7	8
8	589
9	26
	718 = 78

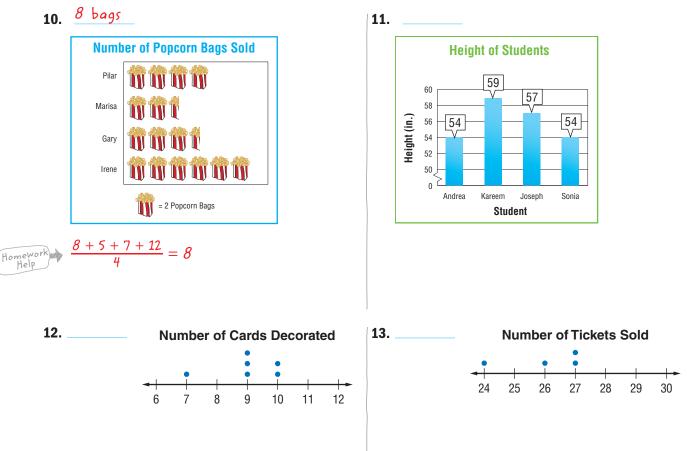
- 6. We Multiple Representations The graphic shows the 5-day forecast.
 - **a. Numbers** What is the difference between the mean high and mean low temperature for this 5-day period? Justify your answer.
 - **b. Graph** Make a double-line graph of the high and low temperatures for the 5-day period.

H.O.T. Problems Higher Order Thinking

7. Reason Abstractly Create a data set that has five values. The mean

of the data set should be 34.

8. Persevere with Problems The mean of a set of data is 45 years. Find the missing numbers in the data set {40, 45, 48, ?, 54, ?, 45}. Explain the method or strategy you used.



- 9. Which of the following data sets does not have a mean of 12?
 - A 12, 11, 13
 C 12, 12, 12, 8
 A
 - B
 8, 16, 10, 14
 D
 7, 12, 17

5-DAY FORECAST						
SUN	MON	TUE	WED	THU		
*				*		
Sunny	Partly Cloudy	Showers	Scattered Showers	Sunny		
Hi: 63°F Lo: 45°F	Hi: 60°F Lo: 38°F	Hi: 55°F Lo: 40°F	Hi: 57°F Lo: 39°F	Hi: 65°F Lo: 42°F		

Extra Practice

Find the mean for each data set.

- **14. Be Precise** The table shows the approximate heights of some of the tallest U.S. trees.
 - a. Find the mean of the data.
 - **b.** Find the mean if the Coast Redwood is not included in the data set.
 - $\ensuremath{\mathbf{c}}\xspace.$ How does the height of the Coast Redwood affect the mean

of the data?

Tallest Trees in U.S.						
Tree	Height (ft)					
Western Red Cedar	160					
Coast Redwood	320					
Monterey Cypress	100					
California Laurel	110					
Sitka Spruce	200					
Port-Orford-Cedar	220					

d. Suppose Blue Spruce was included in the list and the mean decreased to 165 feet. What is the height of the Blue Spruce?

Georgia Test Practice

15. The Student Council sells school calendars each year as a fundraiser. Eric was on the Student Council from 2007 to 2010. The bar graph shows the number of calendars he sold over the 4 years.

What is the mean number of calendars Eric sold each year?

- A 9 © 11
- B 10
 D 14

16. Short Response The table shows the money raised by each booth at a craft sale.

Northside Craft Sale					
Booth Money Raised (\$)					
Artwork	58				
Candles	47				
Holiday decorations	54				
Jewelry	70				
Picture frames	45				
T-shirts	?				

How much money, in dollars, was raised by the T-shirt booth if the mean amount

raised was \$59?

17. Find the mean number of points scored in three games.

Ē 9	H 30
@ 25	① 75

Game	Points Scored
1	24
2	30
3	21

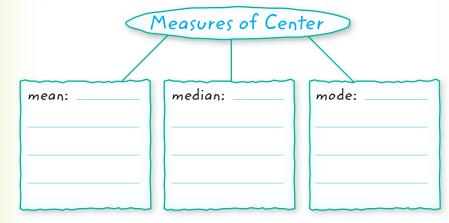
Common Core Review

24. The table shows the distances from Louisville to several cities.

a. How much farther is it from Louisville to Charlotte than from Louisville to Lexington? MCC4.NBT.4
b. Which city is the greatest distance from Louisville? MCC4.NBT.2

City	Distance (miles)
Charlotte	474
Cincinnati	100
Indianapolis	114
Lexington	75
St. Louis	265

Lesson 2 Median and Mode

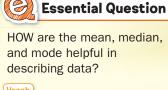

What You'll Learn

Scan the lesson. List two headings you would use to make an outline of the lesson.

Vocabulary Start-Up

A data set can also be described by its median or its mode. The mean, median, and mode are called measures of center because they describe the center of a set of data.

Find the definition of each term in the glossary. Then complete the graphic organizer.



Hurricanes The table shows the number of Atlantic hurricanes in different years.

Atlantic Hurricanes							
5	15	9	7	4	9	8	

- Order the data from least to greatest. Circle the number in the middle of your list.
- **2.** Find the mean. Compare the middle number to the mean of the data. Round to the nearest hundredth if necessary.

measures of center median mode

Vocab

abc

Content Standards MCC6.SP.3, MCC6.SP.5, MCC6.SP.5b, MCC6.SP.5c

Mathematical Practices 1, 3, 4, 5, 6

Key Concept

Work Zone

Median and Mode

The median of a list of values is the value appearing at the center of a sorted version of the list, or the mean of the two central values, if the list contains an even number of values.

The **mode** is the number or numbers that occur most often.

Just as mean is one value used to summarize a data set, the median and mode also summarize a data set with a single number. If there is more than one number that occurs with the same frequency, a data set may have more than one mode.

Examples

1. The table shows the number of monkeys at eleven different zoos. Find the median and mode of the data.

Number of Monkeys										
28		36		18		25		12		44
	18		42		34		16		30	

Order the data from least to greatest.

Median	12, 16, 18, 18, 25 <mark>,</mark> 28 30, 34, 36, 42, 44	28 is in the center.
Mode	12, 16, 18, 18, 25, 28, 30, 34, 36, 42, 44	18 occurs most often.

The median is 28 monkeys. The mode is 18 monkeys.

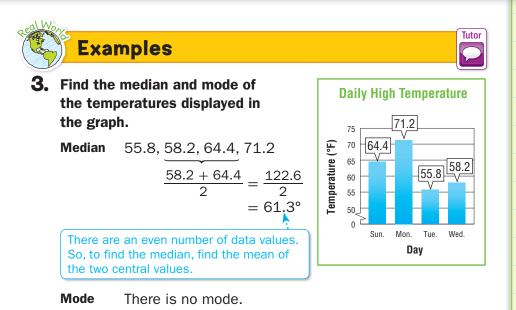
2. Dina recorded her scores on 7 tests in the table. Find the median and mode of the data.

Test Scores						
93		88		94		93
	85		97		90	

Order the data from least to greatest.

Circle the number in the center. This is the median.

Circle the most frequently occurring numbers. This value is the mode.


The median is a score of . The mode is a score of

Got It? Do this problem to find out.

a. The list shows the number of stories in the 11 tallest buildings in Springfield. Find the median and mode of the data.

40, 38, 40, 37, 33, 30, 20, 24, 21, 17, 19

a.

4. Miguel researched the average precipitation in several states. Find and compare the median and mode of the average precipitation.

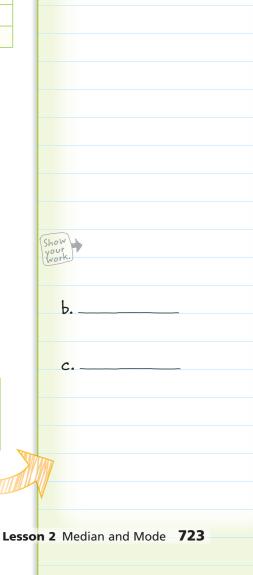
State	Precipitation (in.)	State	Precipitation (in.)
Alabama	58.3	Louisiana	60.1
Florida	54.5	Maine	42.2
Georgia	50.7	Michigan	32.8
Kentucky	48.9	Missouri	42.2

Median 32.8, 42.2, 42.2, 48.9, 50.7, 54.5, 58.3, 60.1

$$\frac{48.9 + 50.7}{2} = \frac{99.6}{2} = 49.8$$

Mode 32.8, 42.2, 42.2, 48.9, 50.7, 54.5, 58.3, 60.1

The median is 49.8 inches and the mode is 42.2 inches. The median is 7.6 inches greater than the mode.


Got It? Do these problems to find out.


b. Find the median and mode of the costs in the table.

Cost of Backpacks (\$)						
16.78	48.75	31.42	18.38			
22.89	51.25	28.54	26.79			

c. Find and compare the median and mode of the costs in the table.

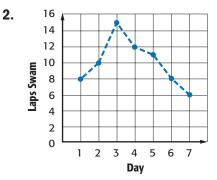
(Cost of J	luice (\$)
1.65	1.97	2.45	2.87
2.35	3.75	2.49	2.87

Guided Practice

d. .

- 1. Find and compare the median and mode for the following set of data. monthly spending: \$46, \$62, \$62, \$57, \$50, \$42, \$56, \$40 (Examples 1–4)
- 2. Describe the daily high Daily High Temperature (°F) temperatures using the 34 35 31 **Rate Yourself!** 36 measures of center. (Example 5) 31 24 33 Are you ready to move on? Shade the section that applies. I have ľm a few ready to questions. move on. Ihave a lot of E Building on the Essential Question How are mean 3. questions. and median similar? Tutor For more help, go online to access a Personal Tutor.
- Copyright © The McGraw-Hill Companies, Inc.

FOLDABLES Time to update your Foldable!


Independent Practice

Go online for Step-by-Step Solutions

eHelp

Find and compare median and mode for each set of data. (Examples 1–4)

1 math test scores: 97, 85, 92, 86

3. Describe the average speeds using the measures of center. (Example 5)

Avera	ige Sp	eeds (mph)
40	52	44	46
52	40	44	50
41	44	44	50

4. Model with Mathematics Refer to the graphic novel frame below for Exercises a–b.

- a. Find the median and mode for each team's wins.
- b. Which team had the better record? Justify your response.

		0	Daily	/ Hi	gh '	Tem	pera	atu	res	(°F)		
		Loi	ıisv	ille					Lex	ing	ton		
75		50		80		72	80		73		75		74
	70		84		70			71		76		76	

Justify your answer.

6. Use Math Tools Use the Internet to find the high temperatures for each of the last seven days in a city near you. Then find the median high temperature.

H.O.T. Problems Higher Order Thinking

7. Persevere with Problems The ticket prices for a concert series were \$12, \$37, \$45, \$18, \$8, \$25, and \$18. What was the ticket price of the eighth and final concert in this series if the set of 8 prices had a mean of

\$23, a mode of \$18, a median of \$19.50?

8. Construct an Argument One evening at a local pizzeria, the following number of toppings were ordered on each large pizza.

3, 0, 1, 1, 2, 5, 4, 3, 1, 0, 0, 1, 1, 2, 2, 3, 6, 4, 3, 2, 0, 2, 1, 3

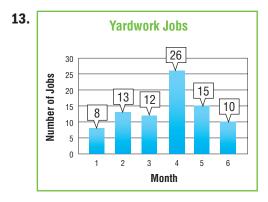
Determine whether each statement is true or false. Explain your reasoning.

- a. The greatest number of people ordered a pizza with 1 topping.
- **b.** Half the customers ordered pizzas with 3 or more toppings, and half the customers ordered pizzas with less than 3 toppings.
- **9. We Justify Conclusions** In the data set {3, 7, 4, 2, 31, 5, 4}, which measure best describes the set of data: mean, median, or mode? Explain

your reasoning.

- 10. The lengths of the 5 long jumps at track practice were 14.5 feet, 13.7 feet, 14.1 feet, 14.9 feet, and 13.8 feet. What would the sixth length have to be to have a mean length of 14.1 feet?
 - (A) 14.8 feet (C) 13.6 feet
 - B 14.1 feet
 D 12.9 feet

Extra Practice


Find and compare median and mode for each set of data.

- **11.** age of employees: 23, 22, 15, 44, 44 <u>median: 23; mode: 44; The mode</u>
- is 21 years more than the median.

Homework Median: 15, 22, 23) 44, 44

Median: 15, 22, 23) 44, 44 Each number occurs only once so there is no mode.

12. minutes spent on homework: 18, 20, 22, 11, 19, 18, 18

14. Describe the test grades using the measures of center.		Test G	rades	
	 100	77	80	65
	87	85	85	82
	100	97	95	75

15. Be Precise Fill in the graphic organizer with the description. The first one is done for you.

measures of center	numbers used to describe the center of data
mean	
median	
mode	

Georgia Test Practice

16. The table shows the number of concerts performed by The Quest. What is the difference between the median number of concerts and the mode number of concerts for 2003–2010?

		The C)uest	
	Year	Number of Concerts	Year	Number of Concerts
	2003	142	2007	124
	2004	142	2008	138
	2005	136	2009	136
	2006	136	2010	150
A	0		© 4	
B	1		D 5	

17. Short Response The prices of some dinners at the Town Diner are shown in the table.

Dinner	Price(\$)
Turkey	9.90
Cheeseburger	6.75
Chicken Salad	5.29
Spaghetti	8.15

What is the median of the prices in dollars

for the meals?

	Nu	mber o	of Scho	ols	
4	3	6	10	3	14
8	5	7	11	7	8

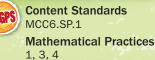
18. The table	shows the number of schools in 12 different
counties.	What is the median of the data?
(F) 4	H 7

	0
G 6	① 8

19. {23, 35, 31, 28, 26, 34} 20. {56, 58, 49, 50, 56, 57} 21. {78, 81, 79, 84, 82, 8 Find the least number in the data set. MCC4.NBT.2 22. {62, 58, 56, 61, 59, 57} 23. {24, 29, 22, 26, 23, 24} 24. {56, 58, 52, 54, 53, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56	Find the greatest number in t	he data set. MCC4.NBT.2						
	19. {23, 35, 31, 28, 26, 34}	20. {56, 58, 49, 50, 56, 57}	21. {78	, 81, 79, 8	34, 82, 83}			
22. {62, 58, 56, 61, 59, 57} 23. {24, 29, 22, 26, 23, 24} 24. {56, 58, 52, 54, 53, 5	Find the least number in the data set. MCC4.NBT.2							
	54, 53, 57}							
		-	the	Day	Distance (mil			
25. The table shows the distances Mari biked each day. What is the greatest distance she biked during the week? MCC5.NBT.3b Day Distance	Broatest alstance she bine	a daming the wook! Moos.MDI.30		Monday	5.2			

26. It is 143 miles from Columbus to Cleveland and 107 miles from Columbus to Cincinnati. How much further is it from Columbus to Cleveland than Columbus to Cincinnati? MCC4.NBT.4

Day	Distance (miles)
Monday	5.2
Tuesday	3.5
Wednesday	4.9
Thursday	3.8
Friday	3.2


Copyright © The McGraw-Hill Companies, Inc

Problem-Solving Investigation Use Logical Reasoning

Case #1 Speak to Me

Amy surveyed 15 students with the statistical question, "Do you speak Spanish, French, both languages, or neither language?" Four students speak French, seven students speak Spanish, and two students speak both languages.

Use a Venn diagram to find how many students speak neither Spanish nor French.

Understand What are the facts?

You know classmates speak Spanish and

.

classmates speak French.

• You know that _____ students speak both languages.

Plan What is your strategy to solve this problem?

Make a Venn diagram to organize the information. Use logical reasoning to find the answer.

Solve How can you apply the strategy?

Draw and label two overlapping circles to represent the two languages. Since

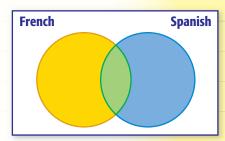
2 students speak both languages, place a 2 in the section that is part of both circles. Use subtraction to determine the number for each of the other sections.

only French: 4 – 🔤 =

only openion i	only	Spanish:	7	_
----------------	------	----------	---	---

neither: 15 –

So, _____ students speak neither French nor Spanish.



Check Does the answer make sense?

Check each circle to see if the appropriate number of students is represented.

Analyze the Strategy

Reason Inductively Explain why Amy's question, "Do you speak Spanish, French, both languages, or neither language?" is a statistical question.

Case #2 Battle of the Mascots

Nick conducted a survey of 85 students about a new school mascot. The results showed that 40 students liked Tigers, and 31 students liked Bears. Of those students, 12 liked both Tigers and Bears.

How many students liked neither Tigers nor Bears?

Understand

Read the problem. What are you being asked to find?

I need to find

Underline key words and values in the problem. What information do you know?

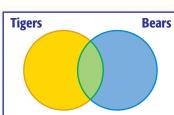
liked Tigers, _____ said they liked Bears, and _____ said they liked both.

Plan

Choose a problem-solving strategy.

T	w:1	1	the	
11	~ 11	1 Use	Ine	_

strategy.


Solve

Use your problem-solving strategy and a Venn diagram to solve the problem.

Draw and label two overlapping circles to

represent the two mascots. Since students said they liked both mascots, place

in the section that is part of both

circles. Subtract to find the numbers for the other sections.

only tigers: only bears:

neither tigers nor bears:

So.

а

students liked neither tigers nor bears as the school mascot.

Use information from the problem to check your answer.

Collaborate Work with a small group to solve the following cases. Show your work on a separate piece of paper.

Case #3 Marketing

A survey showed that 70 customers bought white bread, 63 bought wheat bread, and 35 bought rye bread. Of those who bought exactly two types of bread, 12 bought wheat and white, 5 bought white and rye, and 7 bought wheat and rye. Two customers bought all three.

How many customers bought only wheat bread?

Case #4 Pets

Dr. Poston is a veterinarian. One week she treated 20 dogs, 16 cats, and 11 birds. Some owners had more than one pet, as shown in the table.

How many owners had only a dog as a pet?

Number of Owners
7
5
3
2

Case #5 Sports

The Student Council surveyed a group of 24 students by asking the statistical question, "Do you like softball, basketball, both, or neither?" The results showed that 14 students liked softball, and 18 liked basketball. Of these, 8 liked both.

How many students liked just softball and how many liked just basketball?

Circle a strategy below to solve the problem.

- · Actitout.
- · Guess, check, and
- revise.
 - · Solve a simpler
 - problem.
 - · Look for a pattern.

Case #6 Money

Jorge has \$125 in his savings account. He deposits \$20 every week and withdraws \$25 every four weeks.

What will his balance be in 8 weeks?

CORBIS

Mid-Chapter Check

Vocabulary Check

		· ·	
14	12	14	14
19	18	11	16
30	12	19	15

Lizard Length (cm)

- 1. Define *mean*. Then determine the mean of the following data set {22, 18, 38, 6, 24, 18}. (Lesson 1)
- 2. Fill in the blank in the sentence below with the correct term. (Lesson 2)
 - The _____ is the number or numbers that occur most often in a set.

Skills Check and Problem Solving

Find the mean of each data set. (Lesson 1)

- **3.** number of home runs by baseball players in a season: 43, 21, 35, 15, 35
- **4.** number of different birds spotted: 7, 10, 13, 9, 12, 3

Find the median and mode for each set of data. (Lesson 2)

- **5.** hours spent studying: 4, 2, 5, 7, 1
- 6. heights of buildings in feet: 35, 42, 40, 25,
 42, 54, 50
- 7. Use Math Tools Use the table that shows the lengths of different lizards. Find and compare the median and mode of the data. (Lesson 2)

8.	Georgia Test Practice	The table shows the number of minutes spent
	doing different exercise	s. Which is the median? (Lesson 2)

- A 12.5 © 18.2
- B 15 D 38

Lesson 3 Measures of Variation

What You'll Learn

Scan the lesson. Predict two things you will learn about measures of variation.

Vocabulary Start-Up

Measures of variation are used to describe the distribution, or spread, of the data. They describe how the values of a data set vary with a single number. A *quartile* is one measure of variation.

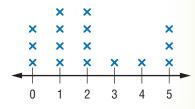
Look in a dictionary and find words that begin with *quar*. Write two of the words and their definitions.

Word beginning with quar-	Definition

Based on the definitions you found, fill in the blank below.

Quartiles are values that divide a set of data into _____ equal parts.

Real-World Link


Surveys James asked his classmates how many hours of TV they watch on a typical day.

- **1.** Divide the data into 4 equal parts. Draw a circle around each part.
- 2. How many data values are in each group?

Hours of TV Watched

Vocab

^ab_c

HOW are the mean, median, and mode helpful in describing data?

Vocab Vocabulary

measures of variation quartiles first quartile third quartile interquartile range range outliers

Content Standards MCC6.SP.3, MCC6.SP.5, MCC6.SP.5c

Mathematical Practices 1, 2, 3, 4, 5

Key Concept

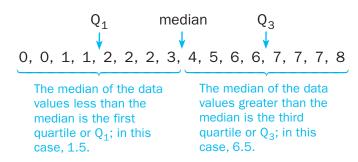
Work Zone

Measures of Variation

Quartiles are values that divide the data set into four equal parts.

First and Third Quartiles

The first and third quartiles are the medians of the data values less than the median and the data values greater than the median, respectively.


Interquartile Range (IQR)

The distance between the first and third quartiles of the data set.

Range

The difference between the greatest and least data values.

Measures of variation of a data set are shown below.

One fourth of the data lie below the first quartile and one fourth of the data lie above the third quartile. So, one half of the data lie between the first quartile and third quartile.

	Example		Tutor
	1. Find the measures of variation for the data. Range $70 - 1$ or 69 mph	Animal	Speed (mph)
Interquartile Range	Quartiles Order the numbers.	cheetah	70
If the interquartile range	-	lion	50
is low, the middle data are	Q_1 median = 27.5 Q_3 \downarrow \downarrow \downarrow 1 8 25 30 50 70	cat	30
grouped closely together.	1 8 25 30 50 70	elephant	25
	Interquartile Range $50 - 8$ or $42 Q_3 - Q_1$	mouse	8
		spider	1
Show your work.	The range is 69, the median is 27.5, the first quartile is 8, the third quartile is 50, and the IQR is	s 42.	
	Got It? Do this problem to find out.		
a	a. Determine the measures of variation for the data 59, 60, 58, 57, 71, 56, and 62.	64,61,	67,

Copyright © The McGraw-Hill Companies, Inc

Find Outliers and Analyze Data

An outlier is a data value that is either much greater or much less than the median. If a data value is more than 1.5 times the value of the interquartile range beyond the quartiles, it is an outlier.

Example

2. The ages of candidates in an election are 23, 48, 49, 55, 57, 63, and 72. Name any outliers in the data.

Find the interguartile range: 63 - 48 = 15

Multiply the interquartile range by 1.5: $15 \times 1.5 = 22.5$

Subtract 22.5 from the first guartile and add 22.5 to the third quartile to find the limits for the outliers.

48 - 22.5 = 25.563 + 22.5 = 85.5

The only age beyond the limits is 23. So, it is the only outlier.

Got It? Do this problem to find out.

3. The table shows a set of scores on a science

contrast their measures of variation.

test in two different classrooms. Compare and

Find the measures of variation for both rooms.

Room A

80

100 - 65 = 35

b. The lengths, in feet, of various bridges are 88, 251, 275, 354, and 1,121. Name any outliers in the data set.

Range

Median

 Q_3

Q₁

IQR

Room Room A В 72 63 100 93 67 79 98 - 63 = 3584 83 65 98 $\frac{87+92}{2} = 89.5$ $\frac{87+93}{2} = 90$ 78 87 92 73 $\frac{67+72}{2} = 69.5$ $\frac{65+73}{2} = 69$ 87 81 89.5 - 69.5 = 20 90 - 69 = 21

80

65

Room B

81

Tutor

Both classrooms have a range of 35 points, but Room B has an interquartile range of 21 points while Room A's interquartile range is 20 points. There are slight differences in the medians as well as the third and first quartiles.

Which measure of center would most likely be affected by an outlier? Explain below.

Tutor

Show work

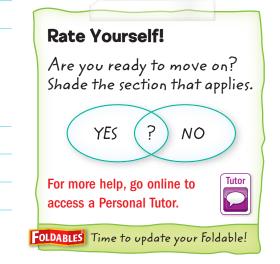
Ь.

Lesson 3	Measures of Variation	735
----------	-----------------------	-----

Got It? Do this problem to find out.

c. Temperatures for the first half of the year are given for Antelope, Montana, and Augusta, Maine. Compare and contrast the measures of variation of the two cities.

Month	Antelope, MT	Augusta, ME
January	21	28
February	30	32
March	42	41
April	58	53
Мау	70	66
June	79	75


Guided Practice

- 1. The average wind speeds for several cities in Pennsylvania are given in the table. (Examples 1 and 2)
 - **a.** Find the range of the data.
 - **b.** Find the median and the first and third quartiles.
 - **c.** Find the interquartile range.
 - **d.** Identify any outliers in the data.
- 2. The heights of several types of palm trees, in feet, are 40, 25, 15, 22, 50, and 30. The heights of several types of pine trees, in feet, are 60, 75, 45, 80, 75, and 70. Compare and contrast the measures of variation of both kinds of trees. (Example 3)

3. Q Building on the Essential Question Describe the

difference between measure of center and measure

Wind Speed		
Pennsylvania City	Speed (mph)	
Allentown	8.9	
Erie	11.0	
Harrisburg	7.5	
Middletown	7.7	
Philadelphia	9.5	
Pittsburgh	9.0	
Williamsport	7.6	

Copyright ©
The
McGraw-Hill
Companies,
Inc.

of variation.

Name .

Independent Practice

- 1 The table shows the number of golf courses in various states. (Examples 1 and 2)
 - **a.** Find the range of the data.
 - **b.** Find the median and the first and third quartiles.
 - c. Find the interquartile range.
 - d. Name any outliers in the data.

For each data set, find the median, the first and third quartiles, and the interquartile range. (Example 1)

2. texts per day: 24, 53, 38, 12, 31, 19, 26

3 daily attendance at the water park: 346, 250, 433, 369, 422, 298

4. The table shows the number of minutes of exercise for each person. Compare and contrast the measures of variation for

both weeks.	(Example 3)
-------------	-------------

Minu	ites of Exe	rcise
	Week 1	Week 2
Tanika	45	30
Tasha	40	55
Tyrone	45	35
Uniqua	55	60
Videl	60	45
Wesley	90	75

5. STEM The table shows the number of known moons for each planet in our solar system. Use the measures

of variation to describe the data.

Knov	vn Mooi	ns of Planet	ts
Mercury	0	Jupiter	63
Venus	0	Saturn	34
Earth	1	Uranus	27
Mars	2	Neptune	13

Go online for Step-by-Step Solutions

eHelp

N	umber of (Golf Courses	
California	1,117	New York	954
Florida	1,465	North Carolina	650
Georgia	513	Ohio	893
Iowa	437	South Carolina	456
Michigan	1,038	Texas	1,018

stem is in the middle and the leav	tem-and-leaf plot, where the	Minneapolis		Columbus
the high temperatures for two sitis		5310	2	5799
the high temperatures for two citie measures of variation to describe		64	3	7
measures of variation to describe		3	4	8
			5 6	2
		 6 3 = 36°	0	2 2 5 = 25°
				210 20
H.O.T. Problems Higher	Order Thinking			
Chind the Error Uirochi was f	inding the measures of variation	of the	6	
Find the Error Hiroshi was f following set of data: 89, 93, 99,	-		11	
Find his mistake and correct it.	110, 120, 100, 111, 102, and 1	res.	-	
		a	0	
	first quartile = 99		-	
	third quartile = 144		2	1
				1 h
	range = 70	/		2
	- Vulige = 10		1	
			11	
Beason Abstractly Create a	list of data with at least six numb	ers that		
Reason Abstractly Create a has an interguartile range of 15 a		ers that		
Reason Abstractly Create a has an interquartile range of 15 a		ers that		
has an interquartile range of 15 a	and two outliers.			
has an interquartile range of 15 a	and two outliers.			
has an interquartile range of 15 a	and two outliers.			
has an interquartile range of 15 a	and two outliers.			
has an interquartile range of 15 a	and two outliers. ow is finding the first and third qu	artiles		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median?	and two outliers. ow is finding the first and third qu why the median is not affected by	artiles very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median?	and two outliers. ow is finding the first and third qu why the median is not affected by	artiles very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median?	and two outliers. ow is finding the first and third qu why the median is not affected by	artiles very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median?	and two outliers. ow is finding the first and third qu why the median is not affected by	artiles very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median?	and two outliers. ow is finding the first and third qu why the median is not affected by a.	artiles very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median? Reason Inductively Explain high or very low values in the data Georgia Test Practic	e	very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median? Reason Inductively Explain high or very low values in the data Georgia Test Practic Which of the following sets of dat	e and two outliers. ow is finding the first and third qu why the median is not affected by a. e a has an interquartile range of 10	very		
has an interquartile range of 15 a Persevere with Problems H similar to finding the median? Reason Inductively Explain high or very low values in the data Georgia Test Practic	e	very		

Homework

Help

Extra Practice

- 12. The table shows the countries with the most Internet users.
 - a. Find the range of the data.

153,880,000 185,550,000 - 31,670,000 = 153,880,000

b. Find the median and the first and third quartiles. *41,880,000; 33,110,000; 99,800,000*

31.67	33.11	36.97	41.88	78.05	99.8	185.55
	Q_1		Median		Q3	

c. Find the interquartile range.

66,690,000 99,800,000 - 33,110,000 = 66,690,000

- d. Name any outliers in the data. none
- Use Math Tools The table shows the top teams in the National Football Conference (NFC) and the American Football Conference (AFC).
 - a. Which conference had a greater range
 - of penalties?
 - **b.** Find the measures of variation for each conference.

Penalties By NFL Teams						
NFC		AFC				
Dallas Cowboys 104		New England Patriots	78			
Arizona Cardinals	137	Indianapolis Colts	67			
Green Bay Packers	113	Jacksonville Jaguars	76			
New Orleans Saints	68	San Diego Chargers	94			
New York Giants	77	Cleveland Browns	114			
Seattle Seahawks	59	Pittsburgh Steelers	80			
Minnesota Vikings	86	Houston Texans	82			

c. Compare and contrast the measures of variation for each conference.

 Find the median, the first and third quartiles, and the interquartile range for the cost of admission: \$13.95, \$24.59, \$19.99, \$29.98, \$23.95, \$28.99.

Millions of Internet Users

99.8

41.88

78.05

31.67 33.11

185.55

China

Japan

South Korea

United Kingdom

United States

Germany

Georgia Test Practice

15. The number of games won by 10 chess players is given.

13, 15, 2, 7, 5, 9, 11, 10, 12, 11

Which of the following statements is *not* supported by these data?

- A Half of the players won more than 10.5 games and half won less than 10.5 games.
- ^(B) The range of the data is 13 games.
- © There are no outliers.
- Only one fourth of the players won more than 7 games.

16. The normal monthly rainfall in inches for a city are given in the table.

Jan	Feb	Mar	Apr	Мау	June
0.65	1.39	0.63	2.16	2.82	4.21
July	Aug	Sept	Oct	Nov	Dec
3.22	1.20	9.31	11.25	0.70	0.80

What values, if any, are outliers?

- (F) 9.31 only
- (G) 11.25 only
- (H) both 9.31 and 11.25
- ① There are no outliers.

17. Short Response The ages in months of dogs enrolled in obedience class are: 8, 12, 20, 10, 6, 15, 12, 9, and 10. Find the range, median, first and third quartiles, and interquartile range of the dogs' ages.

🥵 Common Core Review

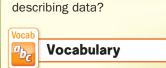
Divide. MCC5.NBT.6, MCC5.NBT.7

18. 160 ÷ 5 =	19. 188 ÷ 8 =	20. 133 ÷ 7 =
21. 87.5 ÷ 5 =	22. 136.5 ÷ 7 =	23. 74.4 ÷ 6 =

24. Refer to the table. How much farther did the Sing family drive on Friday than on Saturday? MCC4.NBT.4

Day	Distance (miles)			
Thursday	68			
Friday	193			
Saturday	26			
Sunday	95			

25. Refer to the table. How many more hours did Koli work in week 2 than in week 3? MCC4.NBT.4


Week	Hours Worked
1	12
2	16
3	9
	1 2

Lesson 4

Mean Absolute Deviation

What You'll Learn

Scan the lesson. List two headings you would use to make an outline of the lesson.

and mode helpful in

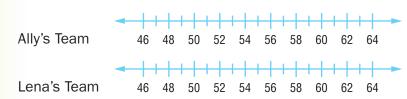
HOW are the mean, median,

Essential Question

mean absolute deviation

Content Standards MCC6.SP.5, MCC6.SP.5b, MCC6.SP.5c

Mathematical Practices 1, 2, 3, 4, 5, 6


Real-World Link

Basketball The tables show the number of points two teams scored.

Ally's Team					
52	48	60	50		
56	54	58	62		

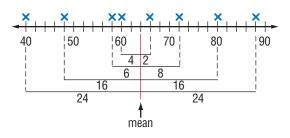
	Lena's Team					
50	51	48	60	49		
62	59	50	62	61		

1. Plot each set of data on a number line.

- 2. Find the mean of each set of data. Plot the means on the number lines with a star.
- 3. Find the range of each set of data.
- 4. Refer to the number lines. Compare and contrast each set of data.

Find Mean Absolute Deviation

You have used the interquartile range to describe the spread of a set of data. You can also use the mean absolute deviation. The mean absolute deviation of a set of data is the average distance between each data value and the mean.


Tutor

1. The table shows the maximum speeds of eight roller coasters. Find the mean absolute deviation of the set of data. Describe what the mean absolute deviation represents.

Maximum Speeds of Roller Coasters (mph)							
58	88	40	60				
72	66	80	48				

- Find the mean. $\frac{58 + 88 + 40 + 60 + 72 + 66 + 80 + 48}{8} = 64$
- Step 2 Find the absolute value of the differences between each value in the data set and the mean. Each data value is represented by an "x".

Step 3 Find the average of the absolute values of the differences between each value in the data set and the mean.

$$\frac{24 + 16 + 6 + 4 + 2 + 8 + 16 + 24}{8} = 12.5$$

The mean absolute deviation is 12.5. This means that the average distance each data value is from the mean is 12.5 miles per hour.

Got It? Do this problem to find out.

a. The table shows speeds of ten birds. Find the mean absolute deviation of the data. Round to the nearest hundredth. Describe what the mean absolute deviation represents.

		ls of To t Birds	op Ten (mph))
88	77	65	70	65
72	95	80	106	68

a.

Compare Variation

Example

You can compare the mean absolute deviations for two data sets. A data set with a smaller mean absolute deviation has data values that are closer to the mean than a data set with a greater mean absolute deviation.

2. The top five salaries and the bottom five salaries for the 2010 New York Yankees are shown in the table below. Salaries are in millions of dollars and are rounded to the nearest hundredth.

	2010 New York Yankees Salaries (millions of \$)									
Top Five Salaries						Bottom	Five S	alaries	;	
33.00	24.29	22.60	20.63	16.50		0.45	0.44	0.43	0.41	0.41

a. Find the mean absolute deviation for each set of data. Round to the nearest hundredth.

Find the mean of the top five salaries.

$$\frac{33.00 + 24.29 + 22.60 + 20.63 + 16.50}{5} \approx 23.40$$

The mean is about \$23.40 million.

Find the mean absolute deviation of the top five salaries.

 $\frac{9.60+0.89+0.80+2.77+6.90}{5}\approx 4.19$

The mean absolute deviation is about \$4.19 million.

Find the mean of the bottom five salaries.

$$\frac{0.45 + 0.44 + 0.43 + 0.41 + 0.41}{5} \approx 0.43$$

The mean is about \$0.43 million.

Find the mean absolute deviation of the bottom five salaries.

$$\frac{0.02 + 0.01 + 0 + 0.02 + 0.02}{5} \approx 0.01$$

The mean absolute deviation is about \$0.01 million.

b. Write a few sentences comparing their variation.

The mean absolute deviation for the bottom five salaries is much less than that for the top five salaries. The data for the bottom five salaries are closer together than the data for the top five salaries.

Mean Absolute Deviation

The absolute values of the differences between each data value and the mean for the top five salaries are calculated below.

33.00 - 23.40 = 9.60

|24.29 - 23.40| = 0.89

22.60 - 23.40 = 0.80

- 20.63 23.40 = 2.77
- 16.50 23.40 = 6.90

Got It? Do this problem to find out.

 b. The table shows the running time in minutes for two kinds of movies. Find the mean absolute deviation for each set of data. Round to the nearest hundredth. Then write a few sentences comparing their variation.

	Running Time for Movies (min)									
Comedy					Drama					
	90	95	88	100	98	115	120	150	135	144

Guided Practice

 Find the mean absolute deviation for the set of data. Round to the nearest hundredth if necessary. Then describe what the mean absolute deviation represents. (Example 1)

Number of Daily Visitors to a Web Site									
112	145	108	160	122					

Check

V

 The table shows the height of waterslides at two different water parks. Find the mean absolute deviation for each set of data. Round to the nearest hundredth. Then write a few sentences comparing their variation. (Example 2)

			Heig	ht of Wa	aterslid	es (ft)			
	Sp	lash L					Wate	r Bay	
	75 9	5 80	110	88	120	108	94	135	126
m	Buildi ean abso	-		Essent ition te					

Independent Practice

Go online for Step-by-Step Solutions

eHelp

Find the mean absolute deviation for each set of data. Round to the nearest hundredth if necessary. Then describe what the mean absolute deviation represents. (Example 1)

1	Know	vn Moons of Planets							
	0	0	1	2					
	63	34	27	13					

2.	Hard	d Drive	(gigaby	ytes)		
	640	250	500	640		
	720	640	250	720		

3. The table shows the lengths of the longest bridges in the United States and in Europe. Find the mean absolute deviation for each set of data. Round to the nearest hundredth if necessary. Then write a few sentences comparing their variation.

	Longest Bridges (kilometers)													
	Uni	ted Sta	ites		Europe									
38.4	36.7	29.3	24.1	17.7		17.2	11.7	7.8	6.8	6.6				
12.9	11.3	10.9	8.9	8.9		6.1	5.1	5.0	4.3	3.9				

For Exercises 4–7, refer to the table that shows the recent population, in millions, of the ten largest U.S. cities.

		opulat J.S. Cit		-	
ı.	1.5	3.8	1.3	1.6	2.9
	1.4	0.9	2.3	8.4	1.3

4. Find the mean absolute deviation. Round to the nearest hundredth

13 How many data values are closer than one mean absolute deviation

away from the mean?

- **6.** Which population is farthest from the mean? How far away from the mean is that population? Round to the nearest hundredth.
- Are there any populations that are more than twice the mean absolute deviation from the mean? Explain.

Be Precise For Exercises 8 and 9, look up the word *deviate* in a dictionary or online.

8. What does the word deviate mean? How can it help you remember what

the mean absolute deviation refers to?

9. How does the word *absolute* help you to remember how to calculate the mean absolute deviation?

10. (WF) Reason Abstractly Create two sets of data, each with five values, that satisfy the following conditions.

The mean absolute deviation of Set A is less than the mean absolute deviation of Set B.

The mean of Set A is greater than the mean of Set B.

Persevere with Problems For Exercises 11 and 12, refer to the table that shows the recorded speeds of several cars on a busy street.

	Recor	ded Sj	peeds	(mph)	
35	38	41	35	36	55

- **11.** Calculate the mean absolute deviation both with and without the data value of 55. Round to the nearest hundredth if necessary.
- **12.** Explain how including the value of 55 affects the mean absolute deviation.

13. We Construct an Argument Explain why the mean absolute deviation is

calculated using absolute value.

14. The table shows the high temperature for 6 days. Which of the following is the mean absolute deviation for the set of data?
(A) 4°F
(B) 4.8°F
(C) 10°F
(D) 68°F

	High	Tempe	erature	(°F)	
75	58	72	68	69	66

Extra Practice

Use Math Tools Find the mean absolute deviation for each set of data. Round to the nearest hundredth if necessary. Then describe what the mean absolute deviation represents.

15.	Digi	ital Ca	mera	Prices	(\$)	\$26.76; The average distance each data value is
	140	125	190	148	156	from the mean is \$26.76.
	212	178	188	196	224	
Homework Help	meai	n: <u>14(</u>	0 + 12	25 + 1	90 +	$\frac{148 + 156 + 212 + 178 + 188 + 196 + 224}{10} = 175.70
	mea	n abs	olute	e dev	iatio	$n: \frac{35.7 + 50.7 + 14.3 + 27.7 + 19.7 + 36.3 + 2.3 + 12.3 + 20.3 + 48.3}{10} = 26.76$
16.		Gra	and SI	am		

10.			Singles Titles Won								
	14	8	7	6	5						
	10	11	8	8	6						

Copy and Solve Find the mean absolute deviation for each set of data. Round to the nearest hundredth. Then write a few sentences comparing their variation.

17. The table shows the amount of money raised by the homerooms for two grade levels at a middle school.

	Money Raised (\$)												
	Sixth Grade							Seventh Grade					
88	116	94	108	112	124	144	91	97	122	128	132		

18. The table shows the number of points scored each game for two different basketball teams.

	Number of Points Scored													
Lakeside Panthers							Jefferson Eagles							
	44	38	54	48	26	36	58	42	64	62	70	40		

- **21. Short Response** The table shows the number of Calories in several sandwiches at a restaurant. Find the mean absolute deviation for the set of data. Round to the nearest hundredth.
- Number of Calories per Sandwich

 477
 660
 572
 561
 527
 605

👏 Common Core Review

Divide. MCC5.NBT.6, MCC5.NBT.7

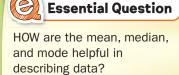
22. 86 ÷ 5 =	23. 95 ÷ 4 =	24. 105 ÷ 6 =
25. 94.5 ÷ 15 =	26. 72 ÷ 5 =	27. 40.6 ÷ 7 =
28. 59.5 ÷ 7 =	29. 126 ÷ 8 =	30. 146 ÷ 5 =

31. The table shows the number of different cones Delightful Dips ice cream shop sold in one afternoon. What is the total number

of cones sold? MCC4.NBT.4 _

32. The hiking club wanted to cover a different trail each day for a week. On Monday they hiked 2.3 miles, on Tuesday they hiked 1.8 miles, on Wednesday they hiked 3.2 miles, on Thursday they hiked 1.4 miles and on Friday they hiked 2.8 miles. What is the total distance they hiked? MCC5.NBT.7

Flavor	Number of Cones
Chocolate	57
Cookie Crunch	49
Fudge Swirl	41
Strawberry	37
Vanilla	51

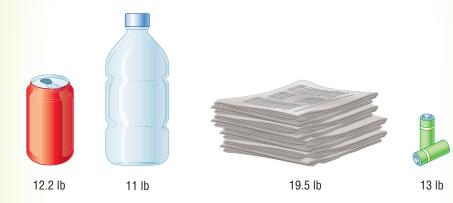

Lesson 5

Appropriate Measures

Watch

What You'll Learn

Scan the lesson. Predict two things you will learn about appropriate measures.



Content Standards MCC6.SP.5, MCC6.SP.5c, MCC6.SP.5d

Mathematical Practices 1, 3, 4

Real-World Link

Recycling The green committee had a recycling drive where they collected aluminum cans, plastic bottles, newspapers, and batteries. The weights collected on the first day are shown.

- **1.** Find the mean weight collected.
- If the newspapers are not included, find the mean weight of the remaining items.
- 3. How does the weight of the newspapers affect the mean?
- **4.** What is the median for the data set? How does the median differ if the newspapers are not included?

Jeff Greenberg/Age Fotostock

Key Concept

Work Zone

Using Mean, Median, and Mode

Measure	Most appropriate when
mean	 the data have no extreme values.
median	 the data have extreme values. there are no big gaps in the middle of the data.
mode	 data have many repeated numbers.

Sometimes, one measure is more appropriate than others to use to summarize a data set.

Examples

1. The table shows the number of medals won by the U.S. Which measure of center best represents the data? Then find the measure of center.

Year	1992	1996	2000	2004	2008	
Number of Medals	112	101	97	103	110	

Since the set of data has no extreme values or numbers that are repeated, the mean would best represent the data.

Mean
$$\frac{112 + 101 + 97 + 103 + 110}{5} = \frac{523}{5}$$
 or $104\frac{3}{5}$

The mean number of medals won is $104\frac{3}{5}$ medals.

2. The table shows the water temperature over several days. Which measure of center best represents the data? Then find the measure of center.

Wate	Water Temperature (°F)					
82	85	82	81			
8	2 8	2 7	'8			

Tutor

In the set of data, there are no extreme values. There is a temperature repeated four times, so the mode 82° is the measure of center that best represents the data.

Got It? Do this problem to find out.

a. The prices of several DVDs are \$22.50, \$21.95, \$25.00, \$21.95, \$19.95, \$21.95, and \$21.50. Which measure of center best represents the data? Justify your selection. Then find the measure of center.

Copyright © The McGraw-Hill Companies, Inc

a.

how

Outliers and Appropriate Measure

Sometimes data sets contain outliers. Outliers are deviations from the majority of the data set. The outlier may affect the measures of center.

Examples

The table shows average life spans of some animals.

3. Identify the outlier in the data set.

Compared to the other values, 200 years is extremely high. So, it is an outlier.

4.	Determine how the outlier
	affects the mean, median, and
	mode of the data.

Aterage Ene opun				
Animal	Life Span (years)			
African elephant	35			
Bottlenose dolphin	30			
Chimpanzee	50			
Galapagos tortoise	200			
Gorilla	30			
Gray whale	70			
Horse	20			

Average Life Snan

Find the mean, median, and mode with and without the outlier.

With the outlier

Mean	$\frac{35 + 30 + 50 + 200 + 30 + 70 + 20}{7} \approx 62$
Median	35
Mode	30
Without the	e outlier
Mean	$\frac{35+30+50+30+70+20}{6} \approx 39$
Median	32.5
Mode	30

The mean life span decreased by 62 - 39 or 23 years. The median life span decreased by 35 - 32.5 or 2.5 years. The mode did not change.

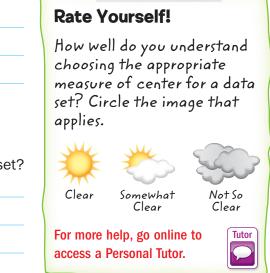
5. Which measure of center best describes the data with and without the outlier? Justify your selection.

The mean was affected the most with the outlier. The median life span changed very little with and without the outlier, so it best describes the data in both cases. The mode does not describe the data very well since there were only two repeated numbers.

Outliers

Tutor

In Example 3, 200 is an outlier. IQR = 40 40 • 1.5 = 60 200 - 70 = 130 130 > 60 So, 200 is an outlier.

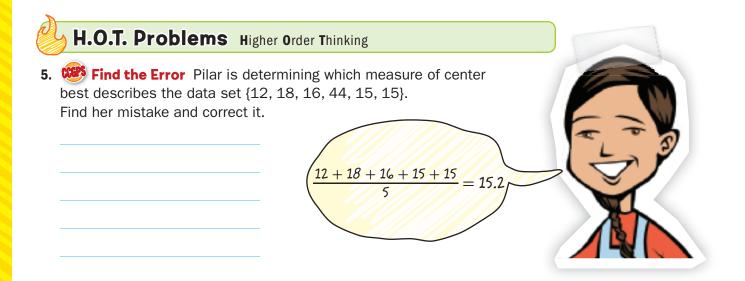


If a data set has an outlier, why might you use the median instead of the mean?

	The prices of some new athletic	
	shoes are shown in the table.	Price of Athletic Shoes
b	b. Identify the outlier in the data set	\$51.95 \$47.50 \$46.50 \$4 \$52.95 \$78.95 \$39.9
	c. Determine how the outlier affect	<u>.</u>
	of the data.	
	d. Tell which measure of center be	st describes the data with
	without the outlier	
	without the outlier.	
7	without the outlier.	
7		
Guided Dractif		
Guided Practic		
1. The table shows the		
	29	
 The table shows the recipes. (Examples 1–5) 	29	Cooking Temperature (°F)

c. Tell which measure of center best describes the data with and without the outlier. Justify your selection.

2. Q Building on the Essential Question How does an outlier affect the mean, median, and mode of a data set?



M	2	r	Y	٦	Δ	
И	a	ł	l	I	C	-

dependent Practice		Go	online fo	or Step-b	y-Step S	Solutions	eHe
Find the measure of center that best represents the	ne data. Justi			j.			
The table shows monthly rainfall in inches for	Month	lune	luly	Аце	Sent	Oct	Nov
-			-	-	-		2.43
median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3–5)							
	æs.			La	ke	Dep	th (ft)
-			_	Crater La	ake	1,	148
b. Determine how the outlier affects the mean, m	nedian, mode	, and	-		-	:	10
range of the data.			_				43
					-		62
							14
c. Tell which measure of center best describes the	ne data with a	and wi			e Lake		24
	The number of minutes spent studying are: 60, 70 Find the measure of center that best represents the selection and then find the measure of center. (Ex The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3–5) The table shows the average depth of several lak a. Identify the outlier in the data set. b. Determine how the outlier affects the mean, n	The number of minutes spent studying are: 60, 70, 45, 60, 80, Find the measure of center that best represents the data. Justi selection and then find the measure of center. (Examples 1 and 2) The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3–5) The table shows the average depth of several lakes. a. Identify the outlier in the data set. b. Determine how the outlier affects the mean, median, mode	The number of minutes spent studying are: 60, 70, 45, 60, 80, 35, a Find the measure of center that best represents the data. Justify you selection and then find the measure of center. (Examples 1 and 2) The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3–5) The table shows the average depth of several lakes. a. Identify the outlier in the data set. b. Determine how the outlier affects the mean, median, mode, and	The number of minutes spent studying are: 60, 70, 45, 60, 80, 35, and 45 Find the measure of center that best represents the data. Justify your selection and then find the measure of center. (Examples 1 and 2) The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3–5) The table shows the average depth of several lakes. a. Identify the outlier in the data set. b. Determine how the outlier affects the mean, median, mode, and range of the data.	The number of minutes spent studying are: 60, 70, 45, 60, 80, 35, and 45. Find the measure of center that best represents the data. Justify your selection and then find the measure of center. (Examples 1 and 2) The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3–5) The table shows the average depth of several lakes. a. Identify the outlier in the data set. b. Determine how the outlier affects the mean, median, mode, and range of the data.	The number of minutes spent studying are: 60, 70, 45, 60, 80, 35, and 45. Find the measure of center that best represents the data. Justify your selection and then find the measure of center. (Examples 1 and 2) The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure of center best describes the data with and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3-5) The table shows the average depth of several lakes. Lake a. Identify the outlier in the data set. Lake b. Determine how the outlier affects the mean, median, mode, and Lake	The number of minutes spent studying are: 60, 70, 45, 60, 80, 35, and 45. Find the measure of center that best represents the data. Justify your selection and then find the measure of center. (Examples 1 and 2) The table shows monthly rainfall in inches for five months. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which and without the outlier. Round to the nearest hundredth. Justify your selection. (Examples 3-5) The table shows the average depth of several lakes. a. Identify the outlier in the data set. b. Determine how the outlier affects the mean, median, mode, and range of the data.

median

mode

6. Ustify Conclusions Determine whether the following statement is *true* or *false*. If true, explain your reasoning. If false, give a counterexample.

Of mean, median, and mode, the median will always be most affected by outliers.

7. **Persevere with Problems** Add three data values to the following data set so the mean increases by 10 and the median does not change.

42, 37, 32, 29, 20

Georgia Test Practice

8. The table shows the greatest recorded weights of fish.

Record Fish Weights				
Fish	Weight (lb)			
King Mackerel	90			
Red Snapper	46.5			
Snook	44			
Swordfish	612.75			
Tarpon	243			
Yellowfin Grouper	34.38			

Which measure is most affected by the outlier?

(A) mean (C) mode

B median
D range

Extra Practice

9. The number of songs downloaded per month by a group of friends were 8, 12, 6, 4, 2, 0, and 10. Find the measure of center that best represents

the data. Justify your selection then find the measure of center. Since the set of data has no extreme values or numbers that are identical, the mean

or median, 6 songs, would best represent the data.

Homework There are no extreme values and no repeated numbers. mean: $\frac{0+2+4+6+8+10+12}{7} = 6$

median: 0, 2, 4, 6, 8, 10, 12

10. The ages of participants in a relay race are 12, 15, 14, 13, 15, 12, 22, 16, and 11. Identify the outlier in the data set. Determine how the outlier affects the mean, median, and mode of the data. Then tell which measure

of center best describes the data with and without the outlier. $_$

- **11. We Justify Conclusions** The table shows the high temperatures during one week. Round to the nearest hundredth if necessary.
 - **a.** Identify the outlier in the data set.
 - **b.** Determine how the outlier affects the mean, median, mode, and range of the data.
- High Temperatures

 29°
 27°
 29°
 25°

 28°
 29°
 62°

c. Tell which measure of center best describes the data with and without the outlier. Explain your reasoning to a classmate.

Georgia Test Practice

- **12.** Find the measures of center for the set of data.
 - 17, 36, 45, 98, 25, 34, 19, 45, 36
 - (A) mean: 41, median: 36, modes: 45 and 36, outlier: none
 - ^(B) mean: 41, median: 36, modes: 45 and 36, outliers: 98 and 19
 - © mean: 39.4, median: 36, modes: 45 and 36, outlier: 98
 - mean: 39.4, median: 36, mode: 45, outlier: 98
- 13. Short Response Refer to Exercise 12. Which measure best describes the set of data? Explain.

14. The table shows the points a basketball team scored in different games.

Points Scored						
79	83	79				
85	41	77				

Which measure is most affected by the outlier?

(F) mean (H) mode

- G median () range
- **15. Short Response** The times from a 100 meter race in seconds were: 12.5, 13.1, 11.9, 12.4, 12.7, 13.1, 12.6, and 12.2. What measure of center best represents the data? Explain.

Common Core Review

Find the total of each set of numbers. MCC4.NBT.4

16. {19, 16, 24, 22, 18}

17. {54, 48, 52, 57, 49}

18. {9, 5, 6, 7, 4, 11, 7}

19.	{31.	36.	28.	34.	25}	

20. The table shows the number of tickets sold to the school musical on three days. How many total tickets were sold? MCC4.NBT.4

Day	Number of Tickets Sold
Wednesday	56
Thursday	79
Friday	68

Marine Biologist

Do all the unusual and amazing creatures in the ocean fascinate you? Do you think you would be good at coming up with your own experiments to test theories about them? If so, a career in marine biology might be something to think about! A marine biologist studies plants and animals that live in the ocean. These include everything from microscopic plankton to multi-ton whales. Marine biologists study organisms that live in the tiny layers of the surface and those that live thousands of meters below the surface.

Explore college and careers at ccr.mcgraw-hill.com

Is This the Career for You?

If you would like to be a marine biologist, you may want to take some of the following courses in high school.

- Biology
- Calculus
- Chemistry
- Marine Science
- Statistics

Turn the page to find out how math relates to a career in Marine Biology.

Ready to Make Waves?

Use the information in the line plot and the table to solve each problem. Round to the nearest tenth if necessary.

- 1. Find the mean of the pipefish data.
- 2. Find the median and mode of the pipefish data.
- **3.** What is the range of the pipefish data? Would you describe the data as spread out

or close in value? Explain.

- **5.** Describe how the outlier affects the mean in Exercise 4.
- **6.** Find the median and mode of the artificial reef data. Which better represents the

data? Explain.

4. Identify the outlier in the artificial reef data. Find the mean with and without the outlier.

Pipefish Specimens (cm)

8.2

8.4

	Nu	mber of	Artificia	I Reefs	in Florid	a Coun	ties
	198	62	108	34	29	73	173
	96	97	9	46	21	22	69
	8	83	31	79	67	61	15
	105	63	34	351	13	126	36
-	25	12	82	35	4		

Career Project

7.4

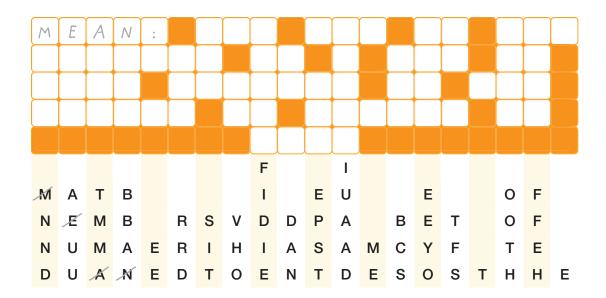
7.6

7.8

8.0

It's time to update your career portfolio! Use the Internet or another source to research several careers in marine biology. Write a brief summary comparing and contrasting the careers.

8.8


8.6

What subject in school is the most important to you? How would you use that subject in this career? Dave H

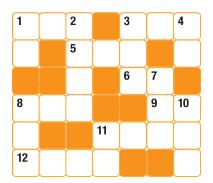
Vocabulary Check

Reconstruct the vocabulary word and definition from the letters under the grid. The letters for each column are scrambled directly under that column.

Complete each sentence using the vocabulary list at the beginning of the chapter.

- 1. The ______ is the number(s) or item(s) that appear most often in a set of data.
- 2. Numbers that are used to describe the center of a set of data
 - are
- The difference between the greatest number and the least number in a set of data is the ______.
- **4.** The ______ of a list of values is the value appearing at the center of a sorted version of the list, or the mean of the two central values, if the list contains an even number of values.
- **5.** The ______ is the distance between the first and third quartiles of a data set.
- A value that is much higher or much lower than the other values of a data set is a(n) ______.

Key Concept Check


Use Your FOLDABLES

Use your Foldable to help review the chapter.

Got it?

Complete the cross number puzzle by finding the mean of each data set.

- **1.** {563, 462, 490}
- **3.** {260, 231, 248, 257}
- **5.** {140, 163, 133, 116}
- **6.** {21, 9, 18}
- **8.** {145, 158, 182, 171}
- **9.** {113, 82, 98, 91}
- **11.** {7960, 8624, 8298, 8366} **10.** {588, 615, 652, 653}
- **12.** {4625, 3989, 5465}

Down

- **1.** {62, 58, 51, 41}
- **2.** {5326, 5048, 4968}
- **3.** {269, 293, 281}
- **4.** {103, 89, 98, 98}
- **7.** {720, 597, 756}
- 8. {142, 169, 150, 155}
- **11.** {70, 89, 90}

Pro	blem	Sol	ving
			MH ()

	able.	Cheetah Speeds (mph)						
What is the mean speed? (Lesson 1)		68	72	74	72	71	75	
. Be Precise The minutes spent doing hom 30, 60, 77, 90, 88, 76, and 90. Find the medi times. (Lesson 2)	an and mod	de of the		•				
. The table shows the high temperatures for one week in July. Find the median and mode for	or		July Tem	perature	es (°F))		
these temperatures. (Lesson 2)	78	82	85	84	82	79	83	
I. The table shows the number of books read in	a reading			Books Read				
challenge. Use the measures of variation to de	-			15 1 13 15			0 14	
The table shows the museum admission price	for soveral	musou	me					
i. The table shows the museum admission price Find the mean absolute deviation. Round to th						Admiss		
· · ·	ne nearest h	undred	th if	M L 14.1	25	Admiss 11.00 12.50	ion (\$) 15.00 13.50	
	e nearest h ute deviatio es are 15, 2 enter that be	undred n repres L1, 14, est repre	th if sents. 15, 9, esents	14.: 12.:	25	11.00	15.	

describes the data with and without the outlier. (Lesson 5)

 Test Scores (%)

 87
 89
 94
 95

 98
 88
 92
 94

 89
 52
 94
 96

Reflect

Use what you learned about mean, median, and mode to complete the graphic organizer.

	Essential	Question	
	HOW are the me and mode h describing	elpful in	
	mean	median	mode
definition			
When is it appropriate to use?			
How does an outlier affect it?			

Answer the Essential Question. HOW are the mean, median, and mode helpful in describing data?